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Abstract
We study curvature effects and localization of non-interacting electrons confined to developable
one-sided elastic sheets motivated by recent nanostructured origami techniques for creating and
folding extremely thin membrane structures. The most famous one-sided sheet is the Möbius
strip but the theory we develop allows for arbitrary linking number. Unlike previous work in the
literature we do not assume a shape for the elastic structures. Rather, we find the shape by
minimizing the elastic energy, i.e., solving the Euler–Lagrange equations for the bending energy
functional. This shape varies with the aspect ratio of the sheet and affects the potential
experienced by the particles. Depending on the link there is a number of singular points on the
edge of the structure where the bending energy density goes to infinity, leading to deep potential
wells. The inverse participation ratio is used to show that electrons are increasingly localized to
the higher-curvature regions of the higher-width structures, where sharp creases radiating out
from the singular points could form channels for particle transport. Our geometric formulation
could be used to study transport properties of Möbius strips and other components in nanoscale
devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Progress in techniques for the manipulation of very small
structures (usually referred to as nanostructures) is constantly
opening new perspectives for the fabrication of electrome-
chanical devices such as force probes, capacitors, resonators,
etc with potentially unusual physical properties. There is,
therefore, significant interest in the relationship between
geometry (and topology) and transport and optical properties
such as electrical conductance and photoluminescence. Theo-
retical work has looked at curvature-induced effective quantum
potentials experienced by particles confined to a surface.
Explicit potentials have been obtained for a few idealized
shapes such as a helical nanotube [1], helicoidal ribbons [2]
and elliptical tori [3]. Gravesen and Willatzen study eigenstates
of a particle confined to an inextensible Möbius strip using
a three-parameter approximation of its equilibrium shape [4].
States and localization of particles confined to an ellipsoidal
quantum dot are studied in [5]. Localized states in helicoidal
strips are considered in [6]. We note that the trapping of modes
in curved structures also occurs in macroscopic systems such
as elastic plates [7] and rods [8].

Recent technological developments, such as nanostruc-
tured origami [9] and strain engineering of nanomem-
branes [10], have demonstrated the possibility of producing
extremely thin membrane structures that can be folded in
a controlled fashion. The nanomembranes created this
way do not only include semiconductors. Indeed, silicon
nanomembranes (SiNMs), consisting of the same material as
bulk Si-based semiconductors, have been shown to become
electrical conductors when the membrane is sufficiently thin.
Parallel developments have made it possible to confine
electrons to lower spatial dimensions, as in quantum dots,
wires, ribbons and wells. In [11] the authors report on
polycrystalline and single-crystal silicon thin-film transistor
(TFT) technology applied to Si nanowire thin films and CdS
nanoribbons. Scanning tunnelling spectroscopy experiments of
so-called surface state electrons, which move freely parallel to
the surface of noble metals but are confined to a narrow surface
layer in the perpendicular direction, are discussed in [12].

Crystal structures with varying linking number (including
Möbius strips) have also been fabricated recently [13], opening
the possibility of studying the topological effect of link on
transport properties. We furthermore note that wavefunctions
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have been calculated for graphene nanoribbons of varying
linking number (and fixed aspect ratio) [14].

Here we consider curvature effects and localization in
one-sided surfaces. Such surfaces have half-integer linking
number Lk. The best known example of such a surface is the
Möbius strip, with Lk = 1/2, but the theory we develop also
allows for larger values of Lk. Since a sufficiently thin elastic
surface deforms by bending only (i.e., no stretching) [15, 16],
we will consider isometric deformations of an intrinsically flat
rectangular sheet.

Unlike previous work in the literature we do not assume a
shape for the elastic structures. Rather, we find the shape by
minimizing the elastic energy, i.e., solving the Euler–Lagrange
equations for the bending energy functional. This allows us to
account for the change of shape of the structure under varying
aspect ratio of the sheet and the effect this has on the electron
states. Interestingly, the minimum-energy solution reveals the
existence of singular points on the edge of the structure where
the bending energy density tends to infinity, giving rise to deep
surface potential wells.

We should note that the theory also applies to (double-
sided) surfaces with integer link, such as the cylinder (Lk =
0) or the figure-of-eight sheet (Lk = 1). However, these
surfaces are uniform in their axial direction and their shape
does not depend on the aspect ratio in an essential way. As
a result of this, the quantum mechanical problem decouples
into lower-dimensional problems that are easier to solve [17].
These surfaces have no singular points and will not further be
considered here.

We use the inverse participation ratio to show that
electrons are increasingly localized to the higher-curvature
regions of the higher-width structures, where sharp creases
radiating out from the singular points appear to form channels
for particle transport. Our geometric formulation could be used
to study transport properties of Möbius strips and other folded-
sheet components in nanoscale devices.

2. The quantum mechanics of a particle bound to a
surface

We consider a particle confined to an intrinsically flat thin sheet
folded into a closed structure. We assume that self-interaction
of the sheet (e.g., of the van der Waals type if surface patches
come within close proximity) and entropic effects can be
neglected, as a first-order approximation, compared to the local
deformation energy. Thus the shape of the surface is purely
determined by the elastic energy. If required, corrections
to the shape due to entropic and interaction effects can be
computed [18], but we shall not need this here. We furthermore
assume that the sheet behaves as an isotropic elastic continuum
(i.e., is elastically equivalent in all directions). This will be the
case for isotropic single crystals or isotropic bodies, and will
be a good approximation for polycrystalline materials whose
component crystals are sufficiently small compared to the radii
of curvature of the deformed sheet. Such an isotropic material
can be characterized by two elastic constants, the modulus of
compression and the shear modulus, or, equivalently, Young’s
modulus and Poisson’s ratio.

All the above assumptions are reasonable for structures
at the mesoscopic scale (tens to thousands of angstroms) or
larger. This coarse-grained modelling of apparently disparate
materials emphasizes the universality of common properties
derived from the geometry and topology of a flexible sheet
deforming in three-dimensional space, rather than from its
chemical details.

To formulate the quantum mechanics of a particle moving
on the surface of a mesoscopic structure as described in the
Introduction we assume a strong one-dimensional confining
scalar potential V normal to the surface [19, 20]. The particle’s
Cartesian coordinates in a small neighbourhood of the surface
are expressed as

R(q1, q2, q3) = x(q1, q2)+ q3N(q1, q2), (1)

where x is an embedding of the surface in R
3 and q1, q2 define

a local coordinate system on the surface; q3 is the distance from
the surface in the direction of the unit normal to the surface N.

The Laplacian in the curvilinear coordinates qA defined
by this parametrization is ∂AG AB |G|1/2∂B , A, B = 1, 2, 3
where G AB = ∂AR · ∂BR is the metric, and |G| its
determinant. The normalization of the wavefunction φ is
given by

∫ |φ|2|G|1/2 d3q = 1. The wavefunction is
then scaled according to � = (|G|1/4/|g|1/4)φ, where
|g| is the determinant of gi j = ∂i x · ∂ j x, i, j = 1, 2,
the metric of the surface. The Hamiltonian therefore
transforms as H → (|G|1/4/|g|1/4)H (|g|1/4/|G|1/4) so that
H� = E� . The normalization of � is then given by∫

dq1 dq2 |g|1/2 dq3 |�|2 = 1. We do not make the further
scaling � ′ = |g|1/4� so that the wavefunction � ′ would then
be normalized with Euclidean norm [1]. The determinant |G|
can easily be directly calculated from G AB as |G| = |g| f 2,
with f = 1 − 2Mq3 + K q2

3 , where K is the Gaussian
curvature and M the mean curvature of the surface x [17, 19].
Implementing the constraint imposed by a confining potential
of the form V (q3) = ω2q2

3/2+O(q3
3), and rescaling according

to ω → ω/ε, q3 → ε1/2q3, with ε a small dimensionless
parameter, gives the expansion εH = H0 + εH1 + O(ε3/2),
with H0 = −h̄2/2m∂2/∂q2

3 +ω2q2
3/2 and the Hamiltonian H1

on the surface equal to (see [20])

− h̄2

2m

(
1

|g|1/2 ∂i g
i j |g|1/2∂ j

)

+ h̄2

8m
gi j gkl

(
hi j hkl − 2hikh jl

)
,

(2)
where hi j are the coefficients of the second fundamental form,
i.e., hi j = ∂i x · ∂ j N, i, j = 1, 2. This is equation (21)
in the general treatment of m-dimensional embeddings in n-
dimensional Euclidean space of [20] specialised to our case
of a two-dimensional surface in three-dimensional space (in
this case the coefficients of the normal fundamental form
vanish, i.e., N · ∂i N = 0). It is straightforward to show that
gi j gkl(hi j hkl−2hikh jl)/8 = −(M2−K )/2. The wavefunction
� then separates in the form

�(q1, q2, q3) = χ(q1, q2)ψ(q3), (3)

giving for the surface wavefunction the two-dimensional
Schrödinger equation

− h̄2

2m
(	+ M2 − K )χ = Eχ, (4)

2
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Figure 1. Lk = 1/2 structures of aspect ratio L/2w = 30, 2π,π,
2π/3 (top left to bottom right) with generators shown. The colouring
changes according to the local bending energy density, from violet
for regions of low bending to red for regions of high bending (scales
are individually adjusted). Note the singularity on the edge of the
strip.

where 	 is the Laplace–Beltrami operator of the surface and
E is zero order in the thickness of the surface [20].

A sufficiently thin elastic surface will deform by bending
only [15] and therefore deform isometrically. If such a surface
is flat in its unstressed state it will remain so under deformation
and therefore have zero Gaussian curvature, K = 0 [21]. It is
said to be developable. The bending energy of a surface of
thickness 2h can then be written as the following integral over
the surface of the strip [22]:

U = 2D
∫ ∫

M2 d2x, (5)

where D = 2EYh3/[3(1 − ν2)] is the flexural rigidity, ν is
Poisson’s ratio and EY is Young’s modulus.

If r(s) is a parametrization of the centreline of the strip, s
being arclength, then

x(s, t) = r(s)+ t[b(s)+ η(s)t(s)]
τ (s) = η(s)κ(s), s ∈ [0, L], t ∈ [−w,w] (6)

is a parametrization of an embedded developable strip of length
L and width 2w [23]. Here t and b are two unit vectors
of the Frenet frame {t,n,b} of tangent, principal normal and
binormal to the centreline, while κ and τ are, respectively, the
curvature and torsion of the centreline, which uniquely specify
(up to Euclidean motions) the centreline of the strip [21]. The
surface, in turn, is completely determined by the centreline of
the structure. The straight lines s = const. are the generators
of the surface. For this surface parametrization, the mean
curvature can be easily calculated using the coefficients of the
first and second fundamental forms of the surface as

M = −κ
2

1 + η2

1 + tη′ . (7)

When M is substituted into (5), with the element of area given
by d2x = ||xs × xt || ds dt = (1 + tη′) ds dt , the t integration
can be carried out [24] giving

U = Dw
∫ L

0
g(κ, η, η′) ds, (8)

with

g(κ, η, η′) = κ2(1 + η2)2
1

2wη′ log

(
1 +wη′

1 −wη′

)

(9)

and η′ ≡ dη/ds. Minimization of this elastic energy functional
is a one-dimensional variational problem cast in a form that
is invariant under Euclidean motions. Following [16, 25], the
Euler–Lagrange equations can be immediately written down
in the form of six balance equations for the components of
the internal force F and moment M in the directions of the
Frenet frame of tangent, principal normal and binormal, F =
(Ft , Fn, Fb)

T, M = (Mt ,Mn,Mb)
T, and two scalar equations:

F ′ + ω × F = 0, M ′ + ω × M + t × F = 0, (10)

∂κg + ηMt + Mb = 0, (∂η′ g)′ − ∂ηg − κMt = 0, (11)

where ω = κ(η, 0, 1)T is the curvature vector. The shape
of the strip’s centreline is found by numerically solving
these equations in conjunction with the usual Frenet–Serret
equations

t′ = κn, n′ = −κt + τb, b′ = −τn, (12)

and the centreline equation r′ = t, subject to boundary
conditions that prescribe the appropriate link [16]. The surface
of the strip is then obtained from (6). For example, Lk = 1/2
structures of increasing aspect ratio are shown in figure 1.

Introducing rectangular coordinates (u1, u2) by develop-
ing the surface into a rectangle,

u1 = s + tη(s), u2 = t, (13)

	 in (4) is then the usual planar Laplacian and M2 provides a
geometry-induced quantum potential well (see figures 4 and 9).
We therefore solve

− h̄2

2m
(∂2

1 + ∂2
2 + M2)χ = Eχ, (14)

subject to the boundary conditions

χ(u1, u2 = −w) = χ(u1, u2 = w) = 0, (15)

χ(u1 + 2L, u2) = χ(u1, u2), (16)

where (16) is the requirement of the single-valuedness of the
wavefunction [26, 27], known as the periodic (or Born–von
Karman) boundary condition [28], and (15) that the particle is
confined to the width of the strip.

3
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Figure 2. Comparison between the exact shape (solid curves) and the shape obtained from the three-parameter Gravesen–Willatzen
approximation (17) (dashed curves) of κ , η, η′ as a function of arclength s ∈ [0, L] for Lk = 1/2, L/2w = 30, L = 200 Å.

Figure 3. Bending energy versus parameters c1, c2 for L/2w = 30 (left) and L/2w = 2π (right) (Lk = 1/2).

Figure 4. Scaled mean curvature squared of developed strip, h̄2

2m M2,
in eV, for Lk = 1/2 and L/2w = 30, 2π,π, 2π/3 (top to bottom).
u1 ∈ [0, L], u2 ∈ [−w,w], L = 200 Å.

3. Numerical results and discussion

3.1. Exact Möbius shapes and the Gravesen–Willatzen
approximation

Shown in figure 1 are the exact L/2w = 30, 2π, π, 2π/3
Möbius structures, with generators shown, of linking number

1/2, as calculated in [16]. The colouring changes according to
the local bending energy density, from violet for regions of low
bending to red for regions of high bending. The linking number
Lk of the (closed) centreline of a strip is equal to the linking
number of the (closed) strip minus the number of right-handed
turns the strip makes about its centreline (the twist Tw), where
the linking number of the strip can be obtained by counting
overcrossings [29].

Shown in figure 2 are κ, η, η′ as a function of the
arclength, s, for the exact shape (solid curves) of the free-
standing Möbius strip shown at the top left of figure 1,
for L/2w = 30, compared with the three-parameter
approximation used in [4]. This approximation to the
centreline of the strip is given by

r(u) = (c1 sin u, c2 sin u(1−cos u), 2c3(1−cos u)3/3), (17)

with u ∈ [0, 2π]. For this large aspect ratio,
corresponding to the dimensions of ribbon-shaped crystals
of NbSe3 Möbius shell structures that have recently been
fabricated [13] the bending energy corresponding to (17) is
easily minimized [4, 16, 24]. The constraint that the length of
the strip must equal L allows one of the three parameters, say
c3, to be eliminated, allowing a two-dimensional visualization
of the bending energy in the remaining two parameters. For
L/2w = 30, we obtain a single minimum, as shown in
figure 3 (left), as obtained in [4]. For smaller aspect ratios
(larger widths), however, as considered in [16], e.g. L/2w =
2π , there are three candidate minima, as shown in figure 3
(right), none of which satisfy the constraint that ensures that

4
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Figure 5. Energy level splittings in meV for Lk = 1/2, L/2w = 30, L = 200 Å, comparing the Gravesen–Willatzen approximation (left)
with the exact shape (right).

the generators do not intersect in the interior of the strip [4, 24],

|η′(u)| � w−1 (18)

(corresponding to avoidance of singularities of M in (7)),
indicating the limitations of approximation (17) even for
modest strip widths in representing a realistic material strip.
In order to calculate the shapes of Möbius structures of higher
widths, shown in figures 1 and 8, we therefore solve the
equilibrium equations (10) and (11) to obtain κ and η of the
exact shape. This allows the energy density M2 to be obtained
via (7), which is required to calculate wavefunctions in (14).
It turns out that irrespective of the aspect ratio the equilibrium
solution of the strip always satisfies (18). Moreover, there is
always exactly one point on the edge of the strip where (18) is
satisfied as an equality (see figure 1). This point corresponds
to a singular point of infinite bending energy density and leads
to a deep quantum potential well.

3.2. Wavefunction symmetry

As illustrated in figure 2, κ and η have even reflection
symmetry about s = L/2, whereas η′ has odd reflection
symmetry. This, through (13), induces the following
transformation in (u1, u2):

u1 → L − u1, u2 → −u2. (19)

The Hamiltonian H = − h̄2

2m (∇2 + M2) is invariant under
this transformation since M2 is. Therefore non-degenerate
states are such that

χ(u1, u2) = ±χ(L − u1,−u2). (20)

Similarly, H is invariant under the transformation

u1 → u1 + L, u2 → −u2, (21)

itself induced by the transformation s → s + L, with
corresponding parity eigenstates

χ(u1, u2) = ±χ(u1 + L,−u2). (22)

Equation (22) can be recognized as the Bloch or Floquet
theorem for periodic potentials:

χ(u1 + L, u2) = eikLχ(u1,−u2), (23)

which, given the periodic boundary condition (16), gives kL =
nπ , with n an integer. Equation (23) then gives (22).

The requirement u2 → −u2 for invariance of M2

under the s → s + L translation comes about because we
use a continuously varying {t,n,b} frame moving along the
centreline, changing to an anti-Frenet frame to avoid a Frenet
frame flip where κ = 0 (n → −n), which therefore defines
the coordinate system used in u1 and u2. In addition, we
therefore require that η → −η, η′ → −η′ and κ → −κ , under
s → s + L, to define the {t,n,b} frame used. Otherwise, if the
Frenet frame is used throughout, it flips under translation, and
u2 → −u2 would not be required.

Thus four different symmetry eigenstates are considered:
even and odd symmetry under translation by L, and even and
odd reflection symmetry in the line u1 = L/2, each with
u2 → −u2. We denote, for example, a state as (−,+), if
it is odd under translation by L, and even under reflection.
Using (20) and (22) one then derives boundary conditions
on the wavefunction at u1 equal to 0 or L. For example,
wavefunctions for states of opposite translation and reflection
parity vanish on u1 = 0 or L. Using (22), one has χ(0, u2) =
±χ(L,−u2).

Reflection symmetry, (20), allows the domain for the
numerical computation to be reduced to half the strip. We
used a second-order finite-difference (FD) scheme, where M
is given by (7) with κ, η, η′ as obtained from the numerical
solutions from [16], calculating the eigenvalues and eigenstates
with MATLAB. For the (+,+) and (−,−) states, using the
five-point stencil, one needs an FD equation for each unknown
on the u1 = 0 boundary, i.e., one needs to step outside
the domain. In order to do this, note that for small u1 <

0, M2(u1, u2) = M2(2L − |u1|, u2) (we are at the same
point—this device just makes the first slot in the argument
of M2 positive) = M2(L − |u1|,−u2) (as b has changed
sign and we are exactly under the surface from where we
started) = M2(L + |u1|,−u2) (by symmetry and the binormal

5
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Figure 6. Lowest energy wavefunctions, Lk = 1/2. For each plot, the horizontal axis is u1 ∈ [0, L], L = 200 Å, the vertical axis
u2 ∈ [−w,w]. In each subfigure the lowest energy wavefunctions for each parity are shown using the order (+,+), (+,−), (−,+), (−,−)
for the first, second, third and fourth rows respectively. The lower right subfigure shows localization to the sharp zigzag-patterned creases of
the bottom plot in figure 4. (a) L/2w = 30; (b) L/2w = 2π ; (c) L/2w = π ; (d) L/2w = 2π/3.

has not changed sign under the small translation by 2|u1|)
= M2(|u1|, u2) (as b has changed sign when we return to the
same neighbourhood to where we started).

The distinction of states under translation by L enables us
to distinguish between particles on the strip (period 2L, cf [30],
i.e., a single channel with zero hopping parameter) from those
in the strip (period L), the former allowing negative parity
eigenstates under translation by L. A prime motivating factor
for the parity formulation was that without imposing (20),
we found the FD scheme skips some (+,+) eigenstates [31]
when solving over [0, L]. The results were verified using finite
elements with periodic boundary conditions under translation,
which did not require a specification of reflection symmetry to
avoid the skipping problem.

It is worth considering the symmetry of the flat-Möbius
states, obtained by solving (14) with M2 set to zero. We

modify the treatment of [4], which considers only the (+,+)
and (+,−) states, to allow for all parity eigenstates of period
2L. There are four independent combinations of eigenstates:

χ1(u
1, u2) = cos(m1πu1/2L) cos((2n + 1)πu2/2w),

χ2(u
1, u2) = sin(m2πu1/2L) cos((2n + 1)πu2/2w),

χ3(u
1, u2) = cos(m3πu1/2L) sin(nπu2/w),

χ4(u
1, u2) = sin(m4πu1/2L) sin(nπu2/w),

(24)

with n = 0, 1, 2, . . ., mi = 0, 2, 4, 6, 8, . . . and either
2m E/h̄2 = (miπ/2L)2 + ((2n + 1)π/2w)2 for χ1, χ2 or
2m E/h̄2 = (miπ/2L)2 + (nπ/w)2 for χ3, χ4, respectively.
It is understood that mi = 0 and n = 0 are excluded if inside
a sin function. The (+,+) states are then given by m1/2 even,
m3/2 odd, the (+,−) states by m2/2 even, m4/2 odd, the

6
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Figure 7. Dimensionless energy, E ′, for the lowest one- and
two-node energy eigenstates for each parity (Lk = 1/2).

(−,+) states by m2/2 odd, m4/2 even, and the (−,−) states
by m1/2 odd, m3/2 even. There are two non-degenerate states:
the (+,+) state with m1 = 0, n = 0 and the (−,−) state
with m3 = 0, n = 1. Otherwise, the (+,+) states are doubly
degenerate with the (+,−) states, the (−,+) states with the
(−,−) states. If arbitrary independent linear combinations are
taken of the (+,+) states in χ1 (m1/2 even) and the (+,−)
states of χ2 (m2/2 even) or the (+,+) states in χ3 (m3/2 odd)
and the (+,−) states of χ4 (m4/2 odd), then one obtains the
states of [4], but these are not eigenstates of the reflection parity
operator. For the small width in [4], L/2w = 30, the non-
degenerate ground state has m1 = 0, the doubly degenerate
first excited states have m1/2 = 2, m2/2 = 2 and the doubly
degenerate second excited states have m1/2 = 4, m2/2 = 4.
The ground state has no nodes, the first excited states have two
nodes and the second excited states four nodes.

3.3. Single-twist Möbius strip: Lk = 1/2

Shown in figure 4 are contour plots of M2 for the structures
shown in figure 1 of increasing widths, which form the
potential wells which scatter the standing waves of electrons
confined to the strip. For clarity, the outer boundary is
omitted, as there are singularities in M2 there for |η′(s)| =
1/w, cf (7) [16]. As w increases, creases are formed in the
Möbius structure, which a quantum particle experiences as
deepening potential wells which lower its energy. Figure 5
compares the energy level splitting for the exact Möbius strip
and the approximation based on (17) for L/2w = 30, L =
200 Å found by solving (14). It is clear that for the lowest
energies, the pattern of splitting is quite different. Recall
though that the approximate shape completely fails to satisfy
the constraint (18) at (still quite modest) larger widths. For
low enough aspect ratio (L/2w = 10π/13), negative energy
eigenstates appear, the usual signature for bound states. Note
that this aspect ratio is much lower than that considered
in [4, 14].

Shown in figure 6 are the lowest energy wavefunctions
for Lk = 1/2 at the four increasing widths of the structures
shown in figures 1 and 4. For each plot, the horizontal axis

Figure 8. Lk = 3/2 structures of aspect ratio
L/2w = 9.36, 4.72, 4.49, 4.22 (top left to bottom right) with
generators shown. The colouring changes according to the local
bending energy density, from violet for regions of low bending to red
for regions of high bending (scales are individually adjusted).

Figure 9. Scaled mean curvature squared of developed strip, h̄2

2m M2,
in eV for Lk = 3/2 and L/2w = 9.36, 4.72, 4.49, 4.22 (top to
bottom). u1 ∈ [0, L], u2 ∈ [−w,w], L = 200 Å.

is u1 ∈ [0, L], L = 200 Å, the vertical axis u2 ∈ [−w,w].
In each subfigure the lowest energy wavefunctions for each
parity are shown using the order (+,+), (+,−), (−,+),
(−,−) for the first, second, third and fourth rows respectively.
The reflection symmetry of the wavefunctions is manifest.
For the highest width, one can see evidence (first column of
lower right subfigure) for the confinement of the lowest energy
wavefunctions to the zigzag creases in the Möbius structure
seen in figure 4 (bottom plot).

Shown in figure 7 is the dimensionless energy E ′ =
(2mw2/h̄2)E versus w, with negative energy states appearing
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Figure 10. Lowest energy wavefunctions for Lk = 3/2. For each plot, the horizontal axis is u1 ∈ [0, L], L = 200 Å, the vertical axis
u2 ∈ [−w,w]. In each subfigure the lowest energy wavefunctions for each parity are shown using the order (+,+), (+,−), (−,+), (−,−)
for the first, second, third and fourth rows respectively. (a) L/2w = 9.36; (b) L/2w = 4.22.

at the highest width. By comparison with the non-geometric
(flat) strip (obtained with M2 in (4) set to zero), we expect the
energy to decrease with increasing width. There are therefore
two competing effects. Multiplying E by w2 makes E ′
increase with width initially, but for larger widths, a decreasing
E ′ means that E decreases faster than 1/w2. The figure follows
the lowest energy eigenstate for each parity with increasing
width, with either one or two nodes in the u1 direction, with
a two-node eigenstate having the larger energy. Note that
the states are not degenerate for the smallest width shown
(L/2w = 30). Also, energy levels for states with more than
one node in the u2 direction would appear as further clusters of
curves higher up the diagram.

3.4. Triple twist strip: Lk = 3/2

Shown in figure 8 are the exact L/2w = 9.36, 4.72, 4.49, 4.22
one-sided structures, with generators shown, of linking number
Lk = 3/2. Note that there are now three alternatingly placed
singularities on the edge of the strip where (18) is satisfied
as an equality and the bending energy density M2 goes to
infinity. The top right structure just self-contacts in the middle.
The larger-width structures in the bottom row were obtained
by allowing for a non-zero reaction force (in the binormal
direction) to prevent self-intersection. The corresponding
contour plots of M2 for the developed strips are shown in
figure 9, for arbitrary length scale, with the three largest widths
at self-contact. The symmetry arguments developed above for
Lk = 1/2 carry over for Lk = 3/2 with the replacement
L → L/3. Thus κ, η, η′ have the same reflection symmetry as
in figure 2, with L → L/3, and the same symmetry under the
translation s → s + L/3. These induce corresponding parity
eigenstates (20) and (22) with L replaced with L/3. These
are the so-called basically periodic solutions [32], which allow
the domain to be reduced to L/6 for numerical integration

using the FD method. From the point of view of Bloch’s
theorem, χ(u1 + L/3, u2) = exp(ikL/3)χ(u1,−u2), with a
Bravais lattice vector of magnitude L/3. To satisfy the periodic
boundary condition kL must be an integer multiple of π . Here
we only show solutions for kL/3 = 0, π .

As with Mathieu’s equation, solutions of higher period
exist [32], as long as the periodic boundary condition (16)
is satisfied so that the wavefunction is single-valued. For
example, to show solutions symmetric or anti-symmetric under
translation χ(u1, u2) = ±χ(u1 + L,−u2) are induced by
the underlying symmetry of κ, η, η′ (i.e., exactly as for the
single-twist Möbius strip), note that s → s + L induces
u1 → u1 + L and that M2 is invariant (η, η′ and u2 all change
sign). Similarly, under the reflection, s → L −s, u1 → L −u1

and M2 is invariant since η is even, but η′ and u2 change sign.
From the point of view of Bloch’s theorem, this corresponds
to a Bravais lattice vector of magnitude L. For these higher
periods fewer nodes are spread over the same length L, so
more states of lower energies are observed, but not lower than
the ground state obtained for the basically periodic solutions.
Note that period L/3 implies period L but not vice versa.

Shown in figure 10 are the lowest energy wavefunctions
for Lk = 3/2 at the four increasing widths of figures 8 and 9.
For each plot, the horizontal axis is u1 ∈ [0, L], L = 200 Å,
the vertical axis u2 ∈ [−w,w]. In each subfigure the lowest
energy wavefunctions for each parity are shown using the order
(+,+), (+,−), (−,+), (−,−) for the first, second, third and
fourth rows respectively. For the highest width, one can again
see evidence for the confinement of the wavefunctions to the
potential wells corresponding to the bending energy density of
the Möbius structure.

Shown in figure 11 is the dimensionless energy E ′ for
Lk = 3/2. The figure again follows the lowest energy
eigenstate for each parity with increasing width, with either one
or two nodes in the u1 direction, with a two-node eigenstate
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Figure 11. Dimensionless energy, E ′, for the lowest one- and
two-node energy eigenstates for each parity (Lk = 3/2).

having the larger energy. Energy levels for states with more
than one node in the u2 direction would again appear as further
clusters of curves higher up the diagram. The large-w energy
behaviour does not now decrease faster than 1/w2. The (−,−)
and (−,+) states also show a degeneracy at large w with the
(+,+) and (−,−) approaching degeneracy at large w.

3.5. Curvature trapping of states

Much attention has been given to the degree of localization
of states of particles constrained to move in structures with
curvature [33, 34], with da Costa [19] giving the example
of one bound state for the bookcover surface with a zero
transmission coefficient in the case of an infinitely sharp bend.
One measure used for distinguishing between localized and
extended states is the inverse participation ratio [35, 36], A =∫ |ψ|4 dV/(

∫ |ψ|2 dV )2. The non-degenerate flat ground state
χ = cos(πu2/2w) has dimensionless inverse participation
ratio A′ ≡ A(2Lw) = 1.5, whereas the flat higher excited
states have A′ = 2.25.

Shown in figure 12 is A′ for Lk = 1/2, showing
a general trend of increase in localization for increasing
width. Comparison with the flat state values is perhaps not
so meaningful for higher excited states as the flat states all
have the same inverse participation ratio. The figure shows
A′, following the lowest energy eigenstate for each parity with
increasing width.

Shown in figure 13 is the corresponding A′ ≡ A(2Lw/3)
for Lk = 3/2. The flat values are the same as for Lk = 1/2.
There is a marked increase of the inverse participation ratio
with width, except for the (−,+) state. There is a dip in the
localization of the ground state before it also sharply increases
with width.

The corresponding lowest energy wavefunctions are
shown in figure 6 (Lk = 1/2) and figure 10 (Lk = 3/2) (first
column of lower right subfigure) for the highest-width Möbius
structures, showing confinement of the wavefunction to the
high-curvature regions corresponding to the lowest plot in each
of figures 4 and 9. The difference in topology is that Lk = 3/2
structures have no creases, prevented by self-contact, giving

Figure 12. Dimensionless inverse participation ratio, A′ (Lk = 1/2).

Figure 13. Dimensionless inverse participation ratio, A′ (Lk = 3/2).

degenerate, disconnected, wavefunctions concentrated at the
singularities in M2 at the largest width. The Lk = 1/2
structures, by contrast, show localization to the creases formed
at higher widths, allowing the wavefunction to be connected in
a zigzag manner across the whole domain.

4. Conclusions

We have studied curvature effects of quantum particles
confined to thin elastic sheets motivated by recent techno-
logical developments such as nanostructured origami [9] that
allow for the fabrication and controlled folding of extremely
thin membrane structures. The equilibrium shape of these
sheets were found by minimizing the elastic energy, i.e., by
solving the Euler–Lagrange equations for the bending energy
functional. Contact forces may need to be accounted for in
order to avoid self-intersection.

We have focused on rectangular one-sided surfaces
(characterized by half-integer link), which, unlike two-sided
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surfaces (characterized by integer link) are found to have
singular points of diverging bending energy density on the edge
of the surface, giving rise to deep surface potential wells for a
particle on the surface. By solving the Schrödinger equation
we have shown that electrons are increasingly localized
(with corresponding negative energy states) to the high-
curvature regions of the higher-width structures, especially
for the Möbius strip, with Lk = 1/2, which develops an
interconnected zigzag pattern of sharp creases. For the triple
twist strip with Lk = 3/2, by contrast, the formation of sharp
creases is resisted by contact forces.

As a measure for the electron localization we have
obtained the inverse participation ratio as a function of the
structure aspect ratio, both for Lk = 1/2 and 3/2. Our
geometric formulation could be used to study the transport
properties of the Möbius strip, nanoribbon, and other folded-
sheet components in nanoscale devices.
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